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ABSTRACT

Personnel detection at border crossings has become an
important issue recently. To reduce the number of false
alarms, it is important to discriminate between humans and
four-legged animals. This paper proposes using enhanced
summary autocorrelation patterns for feature extraction
from seismic sensors, a multi-stage exemplar selection
framework to learn acoustic classifier, and temporal pat-
terns from ultrasonic sensors. We compare the results using
decision fusion with Gaussian Mixture Model classifiers
and feature fusion with Support Vector Machines. From
experimental results, we show that our proposed methods
improve the robustness of the system.

Keywords: Gaussian Mixture Models, Support Vector Ma-
chines, sensor fusion, footstep detection, personnel detection

1. INTRODUCTION

Personnel detection is an important task for Intelligence,
Surveillance, and Reconnaissance (ISR) [1, 2]. One might
like to detect intruders in a certain area during the day and
night so that the proper authorities can be alerted. For ex-
ample, border crimes including human trafficking would be
reduced by automatic detection of illegal aliens crossing the
border. There are numerous other applications where person-
nel detection is important.

However, personnel detection is a challenging problem.
Video sensors consume high amounts of power and require a
large volume for storage. Hence, it is preferable to use non-
imaging sensors, since they tend to use low amounts of power
and are long-lasting. Non-imaging sensors, however, suffer
from ambiguity among the footsteps of animals alone, hu-
mans alone, and of animals traveling together with humans.

Traditionally, personnel detection research concentrated
on using seismic sensors. When a person walks, his/her im-
pact on the ground causes seismic vibrations, which are cap-
tured by the seismic sensors. Previous works have relied on
fundamental gait frequency estimation [3, 4]. Park et al. pro-
posed the method of extracting temporal gait patterns to pro-
vide information on temporal distribution of gait beats [5].

At border crossings, animals such as mules, horses, or
donkeys are often known to carry loads. Animal hoof sounds
make them distinct from human footstep sounds. When hu-
mans and four-legged animals walk together, the sounds they
make are perceptually distinguishable by human listeners.
Automatic algorithms that imitate human capabilities in other
acoustic event detection tasks have been constructed [6, 7, 8],
e.g., using perceptual linear predictions (PLP) features cou-
pled to tandem neural net - HMM recognizers.

Passive and active ultrasonic methods were proposed for
the detection of walking personnel for ultrasound signals [9].
The passive method utilizes the footsteps’ ultrasonic signals
generated by friction forces, while the active method uses the
human Doppler ultrasonic signature. In an outdoor scene,
the passive ultrasound signals are limited in distance and are
noisy. For the active ultrasound method, when a person walks,
each limb is a compound pendulum and has distinct oscilla-
tory characteristics, which in turn results in a micro Doppler
effect. Similarly, the torso also oscillates at a particular fre-
quency. The ultrasonic sensors can detect the ultrasonic sig-
nature generated by footsteps and movements of the torso.
Zhang et al. reported that micro-Doppler gait signatures dif-
fer between human and four-legged animals [10]. These arise
from the different physical mechanisms found in the differ-
ent species. Kalgaonkar et al. analyzed spectral patterns to
classify human walking (walker identification, approach vs.
withdraw, male vs. female) [11].

As shown in the above literature review, existing research
only uses a single sensor recorded in clean environments with
a single object (a person or a four-legged animal) walking.
However, in reality, when there are many objects such as peo-
ple or four-legged animals walking or running in noisy envi-
ronments, it is difficult to distinguish human alone vs. animals
alone vs. animals and humans together using a single sensor
and published approaches.

In this paper, we propose using enhanced summary auto-
correlation patterns for feature extraction from seismic sen-
sors, a multi-stage exemplar selection framework to learn
acoustic classifier, and temporal patterns from ultrasonic sen-
sors. Acoustic, seismic, and ultrasound signals are fused
using decision fusion based on Gaussian Mixture Models
(GMMs) and feature fusion based on Support Vector Ma-
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Fig. 1. Sensor layout, where a multi-sensor multi-modal sys-
tem has acoustic, seismic, passive infra-red (PIR), radar, mag-
netic, and electric field sensors.

chines in order to examine the robustness of our methods.
The organization of this paper is as follows: Section 2

introduces the multi-sensor multi-modality data and events.
Section 3 discusses the feature extraction from seismic,
acoustic, and ultrasonic sensors. Section 4 discusses Gaus-
sian mixture model classifiers, decision fusion, and Support
Vector Machines. Section 5 describes the experiments on
the multi-sensor multi-modal dataset. We conclude this pa-
per with future work in Section 6.

2. DATA

In this paper, we use a multi-sensor multi-modal realistic
dataset collected in Arizona by the U.S. Army Research Lab
and the University of Mississippi. The data are collected in a
realistic environment in an open field. There are three selected
vantage points in the area. These three points are known to be
used by the illegal aliens crossing the border. These places
where the data are collected include: (a) wash (a flash flood
river bed with fine-grain sand), (b) trail (a path through the
shrubs and bushes), and (c) choke point (a valley between two
hills.) The data are recorded using several sensor modalities,
namely, acoustic, seismic, passive infrared (PIR), magnetic,
E-field, passive ultrasonic, sonar, and both infrared and visi-
ble video sensors. Each sensor suite is placed along the path
with a spacing of 40 to 60 meters apart. The detailed layout
of the sensors is shown in Figure 1. Test subjects walked or
ran along the path and returned back along the same path.

A total of 26 scenarios with various combinations of peo-
ple, animals and payload are enacted. We can categorize them
as: single person (11.6%), two people (13%), three people
(21.7%), one person with one animal (14.5%), two people
with two animals (15.9%), three people with three animals
(17.4%), and seven people with a dog (5.9%), where the ani-
mals can be a mule, a donkey, a horse, or a dog, and the num-
ber in the parentheses represents the percentage of the data.
The data are collected over a period of four days; each day at
a different site and different environment. There is variable
wind in the recording environment.

Fig. 2. The overall flow: feature extraction based on phe-
nomenology, GMM and SVM classifiers, and decision and
feature fusion.

2.1. Active Sensing
The time duration for subjects passing by is short (about ten
to twenty seconds at a time) compared to the whole recording
time (five to six minutes recording). Without any ground truth
segmentation, we would like to extract the time duration when
test subjects are passing through. This problem can be formu-
lated as an example of active sensing and learning [12, 13],
which refers to sequential data selection and inference pro-
cedures that actively seek out highly informative data, rather
than relying on non-adaptive data acquisition solely.

For acoustic sensors, in an outdoor scene, the signals are
contaminated by wind sounds, human voices, or unexpected
airplane engine sounds. Seismic and PIR sensors, on the other
hand, are relatively clean. Hence, we can process seismic or
PIR sensors by an energy detection to determine the time du-
ration when test subjects pass by. If the energy in any ten-
second interval exceeds a threshold, the interval is marked
”active.” Seismic and acoustic signals are pre-synchronized;
therefore the acoustic active integral can be marked on the
basis of seismic energy. Ultrasound is not tightly synchro-
nized; therefore it must be independently segmented. For
each recording, there are two active segments (walked or ran
along the path and returned back along the same path). In
this paper, we emphasize the classification of segmented mul-
timodal recordings into two classes: humans only, and hu-
mans with (four-legged) animals.

3. FEATURES EXTRACTION

Features are extracted from seismic, acoustic, and ultrasonic
sensors. The overall flow is shown in Figure 2.

3.1. Seismic

Seismic sensors capture the vibrations in the ground caused
by the motion of the targets or ground coupling of acoustic
waves. The gait patterns of humans and four-legged animals
differ. Previous approaches do not consider the case for mul-
tiple human and/or four-legged animals [3, 5]. When there
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Fig. 3. Seismic feature extraction algorithm.

are multiple human and/or four-legged animals, it is not re-
liable to estimate the gait period based on the single pitch
(fundamental frequency) detection method [14, 15]. Inspired
by Park’s temporal gait pattern approach [5] and the progress
in multipitch analysis [16], we propose a gait pattern fea-
ture extraction method based on enhanced summary auto-
correlation [16], as shown in Figure 3. A typical example
of enhanced summary autocorrelation function is shown in
Figure 4, where the same subjects generate similar enhanced
summary autocorrelation patterns. We form analytic signals
by Hilbert transform and then use full wave rectification fol-
lowed by low-pass filtering and down-sampling for envelope
detection. Finally, we use enhanced summary autocorrelation
to estimate the gait pattern and generate a 12-dimensional fea-
ture vector using 12 triangular windows.

The idea of enhanced summary autocorrelation is to prune
the periodicity of the autocorrelation function. The procedure
is the following: First, from the envelope signals, the autocor-
relation function is computed within each channel (2 chan-
nels in the model of Tolonen and Karjalainen [16]). Second,
the autocorrelation functions are summed up across the chan-
nels to form a summary autocorrelation function. Third, the
summary autocorrelation function is clipped to positive val-
ues, then time-scaled by a factor of two, and subtracted from
the original clipped function. Then, the same procedure is
repeated with other integer factors so that repetitive peaks at
integer multiples can be removed. The resulting function is
called the enhanced summary autocorrelation.

3.2. Acoustic

In acoustic signals, the hoof sounds of animals such as horses,
donkeys, or mules are perceptually distinct from human foot-
step sounds. In order to imitate the perceptual discrimina-
tion abilities of human listeners, we begin by using Percep-

Fig. 4. Examples of enhanced summary autocorrelation of
seismic signals. The left column shows examples of the fea-
ture vector for one person, and the right column is by three
people with three four-legged animals at three different time
frames.

tual Linear Predictive (PLP) features [17], which are com-
mon features in speech recognition. As mentioned in Section
2, the data are recorded in an open field. There are noisy wind
sounds in the recordings. We use spectral subtraction to re-
duce the effect of noise [18, 19].

From the active segments we extracted in Section 2.1,
we further extract acoustic features from short-time footstep
sounds by incorporating seismic signals. Since there are no
labels for the exact time of footstep sounds, we have to use
the seismic sensor information, assuming that the peaks in
the seismic signals correspond to footsteps. Suppose there
are n groups of peaks (if some peaks are close to each other,
we count them as one group) in the seismic signal, whose
times are ti, for i = 1, . . . , n. We choose a small time δ
around the peaks and extract PLP features within the time
duration (ti − δ, ti + δ), for i = 1, . . . , n, as shown in
Figure 5. In each time period, we extract 13 PLP features
using 186ms Hamming windows with 75% overlap, where
186ms is approximately equal to the time duration of a single
footstep (from heel strike to toe slap). Delta and delta-delta
coefficients are appended to create a 39-dimensional feature
vector.

Our goal is to classify humans only vs. humans with an-
imals. In the humans with animals class, there are instances
of human footstep sounds. Therefore, there are some overlap
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Fig. 5. Using peaks of seismic signals for matching acoustic
footstep sounds.

between the two classes in the feature space, as shown on the
left hand side of Figure 6. Regularized discriminative meth-
ods such as support vector machines (SVM) explicitly trade
off the degree of class overlap vs. the complexity of the de-
cision boundary in order to minimize an estimate of expected
risk. Generative models, on the other hand, model overlap
only to the extent permitted by the specified generative model.

In order to improve the classifiers’ ability to compensate
for class overlap, therefore, we propose a multi-stage algo-
rithm for exemplar selection, as shown in Figure 7; this frame-
work is similar to the ”self-training” methods used in semi-
supervised learning. The idea of the framework is to select
the exemplar frames in the humans with animals class which
are dissimilar to the features in the humans only class. With
the exemplar selection method, classifiers are easier to learn
the distinctive features between classes as shown on the right
hand side of Figure 6. The algorithm is as follows:

1. Train an exemplar selection classifier (SVM or GMM)
for humans only and humans with animals using train-
ing data as shown in the left block of Figure 7.

2. Label the training data of the humans with animals
class using the trained models as shown in the middle
block of Figure 7. Each frame in the training data is
labeled as either the humans only class or the humans
with animals class.

Fig. 6. Left: an example of feature space of humans only
and humans with animals class. Right: an example of feature
space of humans only and estimated animals only class, after
exemplar selection.

Fig. 7. Multi-stage framework for acoustic exemplar selec-
tion.

3. Keep the frames which were labeled as humans with
animals; in other words, discard the frames which were
labeled as humans only.

4. Train a new classifier (SVM or GMM) between the es-
timated animals only class and the humans only class
as shown in the right block of Figure 7.

Note that the acoustic features capture short-time footstep
sounds as features, while seismic and ultrasonic features uti-
lize temporal pattern information. Therefore, the multi-stage
exemplar selection framework applies for acoustic features
only.

3.3. Ultrasound

Ultrasonic sensors, also known as acoustic Doppler sensors
[9], emit acoustic waves toward objects and receive reflected
responses from objects. Benefits of using ultrasonic sensors
include low cost ($5 USD in 2011) and low power. The
limitation is that, because of the rapid attenuation of high-
frequency acoustic waves, ultrasonic sensors have a limited
range on the order of ten meters.

By measuring the frequency shift of a wave scattered or
radiated by a moving object, the velocity of the object relative
to an observer can be calculated; this is known as the Doppler
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effect. If the object contains moving parts, each moving part
will result in a modulation of the base Doppler frequency
shift, which is known as the micro-Doppler effect. Given an
acoustic wave transmitted by an observer, the frequency of
the received wave by a single point scatterer is

f = f0

(
1 +

2v

c

)
(1)

where f0 is the frequency of the transmitted acoustic wave, v
is the velocity of the scattered wave relative to the observer
and c is the speed of sound. The Doppler frequency shift,
∆f = 2v

c , is proportional to the scattered wave velocity rela-
tive to the observer.

A human body is an articulated object, comprising a num-
ber of rigid bones connected by joints. When a continu-
ous tone is incident on an animal or a walking person, the
reflected signal contains a spectrum of frequencies by the
Doppler shifts of the carrier tone because of the velocities of
various moving body parts.

As reported in Zhang et al. [10], based on different phys-
ical walking mechanisms, the micro-Doppler gait signatures
between a person and a four-legged animal are different. We
use this concept to extract features in order to distinguish be-
tween humans and four-legged animals.

For ultrasound signal processing, given the data with two
channels, 25 kHz and 40 kHz, we first use a band-pass filter
with stopband at 20 kHz and 30 kHz and passband at 22.5
kHz and 27.5 kHz for 25 kHz channel, and a band-pass filter
stopband at 30 kHz and 45 kHz and passband at 37.5 kHz and
42.5 kHz for 40 kHz channel. Then, we use Hilbert transform
demodulating the captured Doppler signals to emphasize the
contributions of various velocities. Finally, we use cepstral
coefficients for representing the patterns in the spectrogram
[11]. We use 62ms Hamming window with 75% overlap.
The 80-dimensional feature vector includes as cepstral coef-
ficients and their deltas.

4. METHODS

4.1. Gaussian Mixture Model Classifiers

The motivation for using Gaussian mixture densities is that a
sufficiently large linear combination of Gaussian basis func-
tions is capable of representing any differentiable sample dis-
tribution [20, 21].

A Gaussian mixture density is a weighted sum ofM com-
ponent densities, as shown in the following equation,

p(~x|λ) =

M∑
i=1

pibi(~x) (2)

where ~x is a D-dimension random vector, bi(~x), i =
1, . . . ,M , are the component densities and pi, i = 1, . . . ,M ,

are the mixture weights. Each component density is a D-
variate Gaussian function of the form

bi(~x) =
1

(2π)D/2|
∑
i |1/2

exp{−1

2
(~x− ~µi)′Σ−1i (~x− ~µi)}

(3)
with mean vector ~µi and covariance matrix Σi. The mix-
ture weights are constrained by

∑M
i=1 pi = 1. The complete

Gaussian mixture density is parameterized by the mean vec-
tors, covariance matrices (we use diagonal covariance matri-
ces here) and mixture weights from all component densities.
These parameters are collectively represented by the notation
λ = {pi, ~µi,Σi}, i = 1, . . . ,M . For classification, each class
is represented by a GMM parameterized by λ.

Given training data from each class, the goal of model
training is to estimate the parameters of the GMM. Max-
imum likelihood model parameters are estimated using the
Expectation-Maximization (EM) algorithm. Generally, ten it-
erations are sufficient for parameter convergence.

The objective is to find the class model that has the max-
imum a posteriori probability for a given observation se-
quence X . Assuming equal likelihood for all classes (i.e.,
p(λk) = 1/N ) , the classification rule simplifies to

N̂ = argmax
1≤k≤N

p(X|λk) = argmax
1≤k≤N

T∑
t=1

log p(~xt|λk) (4)

where the second equation uses logarithms and the indepen-
dence between observations. T is the number of observations.

4.2. Decision Fusion

GMMs are trained for each modality and their log probabili-
ties are combined as

sλ(~x) =
∑
m∈M

wm logP (~xm|λ) (5)

where M = {a, s, u}, a, s, u represents acoustic, seismic,
and ultrasound modalities, respectively. If all likelihood func-
tions were correctly trained, and if the vectors ~xa, ~xs, and
~xu were conditionally independent given class label, then the
Bayes-optimal mode weights would be wm = 1. In practive
the likelihood functions tend to be overconfident; therefore,
we scale them using 0 ≤ wm ≤ 1,

∑
m∈M wm = 1.

For simplicity, we choose weights by a grid-search of
global weights on validation sets [22]. Note that Equation (5)
corresponds to a linear combination in the log-likelihood do-
main; however, it does not represent a probability distribution
in general, and will be referred to as a score.

4.3. Support Vector Machines

A Support Vector Machine (SVM) estimates decision sur-
faces, g(x) = wTφ(x) + b, directly [23], rather than mod-
eling a probability distribution from the training data. Given
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training feature vectors xi ∈ Rn, i = 1, . . . , k in two classes
with label yi ∈ {1,−1}, i = 1, . . . , k, a SVM solves the
following optimization problem:

min
w,b,ξ

1
2w

Tw + C
∑k
i=1 ξi

subject to yi(w
Tφ(xi) + b) ≥ 1− ξi
ξi ≥ 0, i = 1, . . . , k

where φ(xi) maps xi onto a higher dimensional space, C ≥
0 is the regularization parameter, and ξi is a slack variable,
which measures the degree of misclassification of the datum
xi.

The solution can be written as w satisfies w =∑k
i=1 yiαiφ(xi), where 0 ≤ αi ≤ C, i = 1, . . . , k, and

the decision function is

h(x) = sgn

(
k∑
i=1

yiαiK(xi,x) + b

)
(6)

where K(xi,x) = φ(xi)
Tφ(x) is the kernel function. In this

paper, we use LIBSVM with Radial Basis Function (RBF)
kernels, that is, K(xi,xj) = exp(−γ||xi − xj||2) [24].

5. EXPERIMENTS

In this section, we describe three experiments in order to com-
pare our proposed methods with previous approaches in clas-
sifying humans only vs. humans with four-legged animals.
There are 69 recordings in the dataset. We divide the record-
ings into four groups and choose two for training and two for
testing at a time, resulting in a six-fold cross-validation. In
each fold, we randomly select a part of recordings from train-
ing and testing sets as a validation set. We choose the best
mixture count for the GMM classifier and parameters γ and
C for the SVM, according to the validation set. The experi-
mental results are represented by mean ± standard error.

5.1. Seismic features

As describe in Section 3.1, we compare our gait pattern fea-
tures based on enhanced summary autocorrelation with the
temporal gait pattern [5] under the same experimental setup.
The experimental results are shown in Table 1.

Feature Accuracy (%)
GMM SVM

Temporal gait pattern [5] 71.883±4.607 79.010±4.648
Enhanced summary autocorrelation pattern 81.707±2.564 84.446±2.868

Table 1. Classification accuracy using seismic features.

From the experimental results of Table 1, our proposed
method using enhanced summary autocorrelation pattern out-
performs the previous method [5] in both GMM and SVM
classifiers, because the previous method did not consider the
case of multiple objects. Compared with GMM classifiers [5],
the experimental results show that SVM has a better discrim-
ination between the two classes for seismic features.

5.2. Acoustic features

As described in Section 3.2, we want to examine the effect of
using (1) spectral subtraction, (2) seismic peaks with differ-
ent δ’s, and (3) our proposed multi-stage exemplar selection
framework using GMM and SVM classifiers as the first step
of the algorithm. The experimental results are shown in Table
2.

The first row PLP features without (1)(2)(3)(4) in Table
2 represents using the active audio segments, without using
the duration estimated by the peaks of seismic signals, and
without using spectral subtraction. Spectral subtraction (row
2) improves the performance for both classifiers.

It is helpful to further extract audio features from the time
durations marked by peaks of seismic signals. This method
utilizes both the characteristics of acoustic and seismic sen-
sor in the sensor suites. Without using this method, there are
many silence or noise segments in the audio signals, and the
silence or noise signals make both classifiers ill-trained.

Moreover, different values of δ capture different amounts
of acoustic information. The results show that δ=0.3s has the
best performance compared with δ=0.1s and δ=0.5s. The seis-
mic sensor and acoustic sensor are not at exactly the same
place and the rates of propagation are different. Therefore,
there are asynchronies between acoustic and seismic signals.
Specifically, with δ=0.1s, the acoustic segment does not con-
tain the entire footstep sound. On the other hand, with δ=0.5s,
the acoustic signals include too much unrelated noise. These
reasons may explain the performance variation of both classi-
fiers.

For our proposed multi-stage exemplar selection frame-
work, using GMM for exemplar selection improves the ac-
curacy around 1∼2% for GMM classifiers; on the contrary,
using GMM for exemplar selection degrades the accuracy
for SVM classifiers. A possible reason is that SVM implic-
itly chooses support vectors for the hyperplane in the feature
space. Using GMM selected features, the SVM has less infor-
mation, and hence has worse performance. On the other hand,
using SVM for exemplar selection degrades performance in
all cases. A possible explanation is that the SVM cannot se-
lect proper exemplar in the case of overlapping feature space
in the first stage.
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Feature Accuracy (%)
GMM SVM

PLP features without (1)(2)(3)(4) 73.768±2.230 65.337±1.896
PLP features with (1) 76.105±4.098 71.698±4.572

PLP features with (1)(2), δ=0.1s 74,975±5.079 78.093±1.699
PLP features with (1)(2)(3), δ=0.1s 75.737±2.936 76.604±2.179
PLP features with (1)(2)(4), δ=0.1s 72.735±4.585 75.090±2.577

PLP features with (1)(2), δ=0.3s 77.555±4.268 80.578±3.113
PLP features with (1)(2)(3), δ=0.3s 79.015±3.799 72.638±2.727
PLP features with (1)(2)(4), δ=0.3s 75.325±3.739 77.196±1.706

PLP features with (1)(2), δ=0.5s 75.392±3.376 76.214±4.396
PLP features with (1)(2)(3), δ=0.5s 77.688±3.149 74.507±3.634
PLP features with (1)(2)(4), δ=0.5s 74.800±4.523 71.313±3.456

Table 2. Classification accuracy using acoustic features,
where (1) represents spectral subtraction, (2) represents the
use of seismic peaks with different δ second (s), and (3) rep-
resents the use of our proposed multi-stage exemplar selection
framework using a GMM classifier as the first step of the al-
gorithm. (4) represents the use of our proposed multi-stage
exemplar selection framework using a SVM classifier as the
first step of the algorithm.

5.3. Decision fusion and feature fusion with seismic,
acoustic, and ultrasonic features

We perform multimodal fusion in a classifier-dependent fu-
sion: decision fusion with GMMs, feature fusion (vector con-
catenation) with SVM. Note that, for ultrasonic data, within
186ms, there are eight moving windows resulting in a 640-
dimensional feature vector. We use principal component anal-
ysis (PCA) keeping 99% of the energy, and reduce features to
7 dimensions.

We compare our proposed methods using GMM and SVM
classifiers, as shown in Table 3. Row 1 of Table 3 repre-
sents the use of ultrasonic features, enhanced summary au-
tocorrelation pattern, PLP features with spectral subtraction,
seismic peaks with δ=0.3s, and the multi-stage exemplar se-
lection framework using GMM classifiers; Row 2 of Table 3
represents the use of the same seismic, ultrasonic features as
Row 1, and acoustic features without the multi-stage exem-
plar selection. Row 3 of Table 3 represents the use of tempo-
ral gait pattern [5], PLP features without spectral subtraction,
using the whole active segments, and without the multi-stage
exemplar selection. Row 4 of Table 3 represents the use of
ultrasonic features.

In Table 3, our proposed method, using seismic and
acoustic features along with ultrasonic features, greatly im-
proves the robustness compared with previous approaches.
With the exemplar selection framework, GMM classifiers
achieve the best fusion accuracy. The SVM, however, per-
forms worse with exemplar selection, as mentioned above.
The classification task, using only ultrasonic features (last
row), is roughly 7% better with SVM classifiers compared
with GMM classifiers.

We analyze the errors in the (1)(3)(5) in the GMM deci-

Feature Accuracy (%)
GMM SVM

(1)(3)(5) 86.092±2.313 84.446±2.868
(1)(2)(5) 84.928±2.790 85.307±3.405

(4)(5) 81.903±3.144 81.041±1.754
(5) 75.528±3.564 82.188±3.466

Table 3. Classification accuracy using decision fusion (GMM
classifier) and feature fusion (SVM classifier), where (1) rep-
resents the enhanced summary autocorrelation pattern, (2)
represents PLP features with spectral subtraction and seismic
peaks with δ=0.3s, (3) represents (2) with the multi-stage ex-
emplar selection framework using a GMM classifier as the
first step of the algorithm, (4) represents the use of tempo-
ral gait pattern [5], PLP features without spectral subtraction,
using the whole active segments, and without the multi-stage
exemplar selection, and (5) represents ultrasonic features.

sion fusion case. Among the six-fold cross-validations, the
recordings of the event, seven people with a dog, are all in-
correctly classified as human only. This accounts for 52.6%
of all errors. A possible explanation is that, dogs have padded
feet (instead of hoofs) and are relatively small. It is difficult
to tell dogs from humans because the classifier has learned to
recognize hoof sounds. The limited amount of data for this
event means that the classifier is unable to learn its distinctive
pattern.

6. CONCLUSION

In this paper, we use a challenging realistic multi-sensor
multi-modal dataset for personnel detection. Based on phe-
nomenology of the differences (gait pattern, footstep sound,
and micro-Doppler motion) between humans and four-legged
animals, we propose using a new seismic feature extraction
method based on enhanced summary autocorrelation, a multi-
stage acoustic exemplar selection framework, and temporal
patterns from ultrasonic sensors. Experimental results show
that the combination of multi-modal sensors improves the ro-
bustness of the system over previous approaches. Since it
is inexpensive to deploy unattended ground sensors such as
acoustic, seismic, and ultrasonic sensors in target areas; it is
possible to further extend the current fusion system to create
a tracking system based on sensor network fusion.
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